Course Code	Credit Hours
CE-309	2-0

Course Description

This course provides the knowledge and understanding of analyzing structural elements by Matrix Method of analysis. The course is covered in three primary parts as matrix stiffness method of analysis, matrix flexibility method of analysis and introduction to structural dynamics. Each primary part has three to four secondary parts based on structural element degrees of freedom per node like springs, truss, beam and frame elements. Each structural element is covered in details encompassing formulations for load, displacement and stiffness/flexibility matrices and subsequent solution procedure for analysis and obtaining the desired outputs in terms of external reactions, internal forces like shear force and bending moments and displacements.

Text Book:

- 1. Structural Analysis By R.C.Hibbeler
- 2. Matrix Structural Analysis By Ronald L. Sack
- 3. Fundamentals of Finite Element Analysis By David V. Hutton
- 4. Structural Dynamics By Clough And Penzien

Reference Book:

Prerequisites :

CE-306 Structural Analysis-II.

ASSESSMENT SYSTEM FOR THEOR

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes	
1-2	Introduction	
	Course Introduction	
	Introduction to matrix algebra	
	 Degree of Indeterminacy and Degree of freedom 	
	Linear Springs	
2-5	-5 Matrix Stiffness Method	
	2D Truss Analysis	
	 Notations, node and member numbering, local and global axis, 	
	Coordinate transformation matrix, Compatibility and equilibrium	
	 Assembly of structural stiffness matrix 	
	Finding displacements, member forces and reaction due to Loads	
	Settlement, Temperature and Fabrication error/lack of fit	
6-8	Beam Analysis	
	 Notations used, Development of stiffness matrix for beams, Load 	
	vector for beams	
	Problem solution for finding deflection, rotations and reactions for SFD and	
	BMD	
9	Mid Semester Exam	
10-13	Frames-2D	
	 Notations, Coordinate transformation matrix, Compatibility and 	
	equilibrium, Assembly of structural stiffness matrix	
	Problem solution for finding deflection, rotations and reactions for SFD and	
	BMD	
14-16	Matrix Flexibility Method	
	Introduction, Derivation and formulation of flexibility matrix for Trusses,	
	Beams and frames	
17-18	End Semester Exam	
Practical:	Nil	